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Convergence Characteristics of the Crank-Nicolson-Galerkin 
Scheme for Linear Parabolic Systems 

Jin-Rae Cho*, Dtte-Yul Ha, Tae-Jong Kim 
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Jangjeon-.Dong, Kurnjung-Ku, Pusan 609-735, Korea 

This paper is concerned with the investigation on the stability and convergence characteristics 

of the Crank-Nicolson-Galerkin scheme that is widely being employed for the numerical 

approximation of parabolic-type partial differential equations. Here, we present the theoretical 

analysis on its consistency and convergence, and we carry out the numerical experiments to 

examine the effect of the time-step size d t  on the h- and p-convergence rates for various mesh 

sizes h and approximation orders /~. We observed that the optimal convergence rates are 

achieved only when At, h and p are chosen such that the total error is not affected by the 

oscillation behavior. In such case, At  is in linear relation with DOF, and furthermore its size 

depends on the singularity intensity of problems. 
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1. Introduction 

For the numerical approximation of the par- 

abolic-type partial differential equations, the 

Crank-Nicolson-Galerkin scheme has been wi- 

dely employed thanks to its higher time discre- 

tization accuracy compared to other first-order 

schemes (Bieniasz et al., 1997 ; Cho et al., 2000 ; 

Tsukerman 1995). Even though this scheme is 

unconditionally convergent, it may suffer the in- 

herent oscillation phenomenon unless the time- 

step size is insufficiently small to satisfy a specific 

time-space partitioning criterion depending on 

numerical data of the problem at hand. 

The basic stability analysis of the Crank-Ni-  

colson-Galerkin scheme has been laid down, and 

the theoretical argument on the critical time-step 

size securing non-oscillation results may refer 

to Johnson (1987) and Burnett (1988). However, 
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the derived criterion for the critical time-step size 

does not secure h-  and .b-convergence rates, in 

most cases, because it is simply turned to prevent 

the oscillation by the largest eigenmode. Regard- 

ing to the temporal-spatial error estimate, John- 

son (1987) established the fundamental mathe- 

matical framework for first-order schemes in his 

book. Nevertheless, the stability and convergence 

analysis of the Crank-Nicolson-Galerkin scheme 

is still focused by many researchers in a variety of 

engineering fields '~Comini and Manzan 1994; 

Morjaria and Mukherjee 1981; Suresh et al., 

1994). The reason is because the suitable time- 

step size is problem-dependent and the conver- 

gence-level parametric characteristics have not 

been sufficiently investigated. 

We in this paper intend to investigate the 

stability and convergence characteristics of the 

Crank-Nicolson-Oalerkin scheme with respect to 

the time-step size and the mesh parameters. For 

this goal, we first derive a priori temporal-spatial 

error estimate for convection-type problems, and 

then we carry out the parametric numerical ex- 

periments to the combination of three parameters 

At, h and #. From the numerical results, we 
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examine the influence of  the parameters on the 

h -  and p-convergence rates of  the scheme. 

2. Convection-Type Problems 

Figure I depicts a general convection-type heat 

transfer problem. The t ime-dependent tempera- 

ture field T ( x ; t )  is governed by heat-diffusion 

equation based on Fourier 's  law, and the initial 

and boundary conditions : 

T=f(x;t) 

Fig. I 

-~:VT .a - h, fl"(x; 0-T..) 

A general two-dimensional heat convection 
problem 

aT  _~q_ 
pc- O~--A.  ( t~ 'T)  - Ot' in .O, tE(O, t*] 

T(x'j=To, at t=O 

Tfx)  =f (x ; t ) ,  on F~ 

- ~ V T ' n = h , [ T S ( x ; t ) - T * * i ,  on C~, 

(l) 

Here, c, x and hc indicate respectively the speci- 

fic heat, the thermal conductivity and the heat 

convection coefficient, while q~L2(.Q) and t ~ 

denote the internal heat source and the time in- 
terval under consideration. Furthermore, T s and 

T.. denote the surface temperature on .F'D and the 

constant surrounding temperature, respectively. 

A varying temperature f ( x ; t ) E L 2 ( F ~ )  is ap- 

plied to the essential boundary /"o, and the heat 

convection between the natural boundary F~ and 

the surrounding is allowed, 

dary data specified on /'D and F~. 

Now, we establish a weighted residual varia- 

tional formulation for the solution T(x; t .+,) .  We 

first define the space V(12) of admissible test 

temperature fields such that every function 3 in 

V(.Q) has finite thermal strains and its trace on 

1"o vanishes : 

V(t2) =(_~(x):3(x)~H*(~2), 7~_,=o} (3) 

with 70 defined as a trace operator, 7o:H~(.Q) 
H m ( f ' o ) .  On the other hand, the trial function 

space 17".+1 (O) for time stage t~+, is defined as a 

linear manifold of V(.Q) 

V.+a(._o) = V(.Q) +{  w* }.+, (4) 

2.1 Teml~ral  dlscretization and spatial for- 
mulatlon 

Let us partit ion time period iO, t ' ]  into uni- 

form N sub-periods,  then we have uniform time 

intervals At=tUN and ( N + I )  time stages 

& = n A t ,  (n=O,  1, "", N) ,  According to the 

Crank--Nicolson scheme, we have a sequence of  

semi-discrete converted boundary value problems 

for N time stages t., (n  =0,  I, 2, -.., N -  1) : 

PCt T T~ 

( - gl T" .) ,.m= h, ( ~,L~ - To), on/~, J 
(2) 

The converted boundary value problem (2) suc- 

cessively characterizes the temperature distribu- 

tion T(x ; t .+ l )  at time stage t~+x with the previ- 

ously obtained solution T(x; tn)  and the boun- 

where w ~ are extended H 1 (.Q) function satisfying 

w*[r~=fn+wz. We note that the trial function 

space is time-stage dependent owing to t ime- 

dependent trace data on 1"o, while the test func- 

tion space is time-stage invariant. 

As usual, multiplying the converted partial 

differential equation by a test function Q and 

integrating by parts over the domain _O we arrive 

at a sequence of N abstract variational pro- 

blems: Given T . ~  V(.Q), find Tn+t~ ~(_o) 

such that 

a(T.+,, s =l(E) .  VE~  V(-O), 
n = 0 ,  I, 2, .,., N - I  

(5) 

Here, a ( , , . ) : lT(~O) • V(_o) ---* R is a bilinear 

functional and I ( ' ) :V ( .Q) - - -*R  a linear func- 

tiona defined by 
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/ .  
a (  

+At~O..~aEdO 

- ~ t  f r  h~ ( T~ - 2 T| SdI~ 

where t~,,+~;~ denotes the time derivative of  qn+~2. 
The variational problem (5) has a unique so- 

lution Tn+~ which depends continuously on the 
data as follows ( c ,  ca and ca are positive con- 
stant~) (Oden and Demkowicz I996): 

i~ Z,§ R,,~< c, ] ~..~a I , .a :  c= ~( Tg-2 Z~.)II,.':r.~ 
+c, i{ ,,' }.+, ~,.~ .f7) 

where tJ-lh,,, is a first-order Sobolev norm defined 
by 

, i,l,,,:,} 

2.2 F i n i t e  e l e m e n t  a p p r o x i m a t i o n  

For finite element approximation of  the varia- 
tional problem (5), we make partition fd into a 
finite collection of ~;(P) finite elements -Qr with 
boundaries a~Qr such that 

1.~e, 

f2= U.Ox, ~2~rIL2L=~ if K~=L (9) 
K=l  

and the finite element approximation space V * 
(~2) and { w* }~H defined by 

v~c,a) = v ( a )  ~ , c 0 ( ~ . i  I 
~. ? (10) 

{ w* }L ,= {  u," }.+, n ~  ~(.OK) J 
Then. we get the following set of full-discrete 

finite element approximations for each time stage 
t~,l: Given T ~  V.h(.-O) +{ w" }~, find T~§ 
{ Vn~.~ (.Q) +{ w* }h+~ } such that 

"k 

n = 0 ,  I, 2, .... N - - 1  

To express the above finite element approxima- 
tion (11) in a usual matrix form, let us span the 
finite element approximation space V ~ (.O) by the 

N finite element basis functions { ~,.(X~}~.i, 

N n 
T.~§ - ~ / , 

Substituting Eq. (12) into Eq. (I1), we have 
the next successive matrix system of simultaneous 
linear equations, the well-known Crank-Nico- 
lson-Galerkin scheme : 

T .  /,,+~n (t3) 

Here. time-stage invariant (assuming tempera- 
ture-independent material constants) matrices C, 
K and time-stage dependent vector F , §  are 
respectively expressed by 

rc~=.. ~ocetlx ~, . 

[K!o=s162 .. ? ( 1 4 )  

�9 k J "  , t 

3. Stability and Convergence 

Let T ( x ; t )  be an exact solution of  the in- 
itial-boundary value problem [1), and denote 
corresponding solutions of  the semi-discrete 
problem (2) and the full-discrete problem (11) 
by T ' (  ' x;t;  and T ~ (x; t) .  In addition, we define 
the energy norm II'll~,,,, by 

Then, the total approximation error E r ( x ; t ' )  ---- 
T ( x ; t ' ) - T * ( x ; t  ~ is composed of the tem- 
poral diseretization error E r ( x : t  ~ = T ( x ; t ' ) - - -  
T~(x;t ~ and the spatial approximation error 
E~ (x;/~ --:- T" (x; t  ~ - T ^ (x ; / ' )  such that 

Er--- T(x;,t') - T*(x;,t') 
= T ( x ; t " , - T r ( ~ t ' ) +  T ' (x; t ' ) -T~(x; t  ') (16) 
=E,+E~ 

with the inequality: 

[t Ez 11~,,~,--II E~ + E^ H,(a, 
(17) 

Now. let us denote the operator XT. (-- xV) by 
A,  and define the ;ubspace D ( A )  of L2(~2) such 
a s  

D ( A ) = {  T ~ A r z ( . Q ) : T = o  on F ~  t 
f i g )  

A : L2(L2) D D ( A )  - .  L2(~2) f 
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then~ the operator A becomes self-adjoint. From 

the spectral decomposition theorem, we have (see 

Oden and Demkowicz (1996) for details on the 

both) 

A T (x;t) - - f ~ A d I ( A )  T (x:t), (19) 
V T (x;t)  ~ D ( A )  

where A is an eigenvatue distribution and 1(,~) 

defined as the spectral family of the operator A .  

Moreover, a unique weak solution is expressed by 

T (x; t )  -- e '~a*'~ To (x) 
(20) 

= f [ - ' " " ~ ' d I ( A )  To(x)  

with the conserved energy: 

t21j 
----II To(x)fl *, "7't > 0  

In which, ( . , . )  denotes the inner product. 

From the operator A ,  the spectral decom- 

position and the Trace theorem, we can define the 

energy norm as follows (V T ~ D ( A ) ) :  

T (x;t) [~aj 

-- [' . , (22) 

(h+:; x) f s  ! e ':~'~)l'(l-at/2pc) d il ().) T~ To) ~C, 

Theorem 3.1 The Crank-Nicolson-Galcrk in  

scheme (13) exhibits the following stable conver- 
gent error bound 

] Er l~i<C(hJx)t*  

l; ', ~r . , , (  . r  +h  "-~ t,.at,, IA :Tolxl; pc,  j , ~ . , , - 7 - 1 T o ( x ) b . ~ }  (23) 

where a=(~t/h) and p = m i n ( s - 1 ,  p), while 

denoting s and p as the regularity of TO(x) and 

the order of approximation polynomials (see Ap- 

pendix for the proof). 

Even though the Crank-Nicolson-Galerk in  

scheme is unconditionally convergent, it may lead 

to oscillatory results unless the time-step size is 

elaborately chosen. This oscillation tendency is 

proport ional  to the intensity of  sudden change in 

the temperature t ime-history response by im- 
pulsive thermal load or /and  abrupt change in the 
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Fig. 2 

( P,e. r'.hc) ~i T' T** 

. . . .  L -,-'rr~ 
An one-dimensional heat convection pro- 
blcm 

boundary condition. One crucial situation in heat 

transfer problems becomes a thermal shock prob- 

lem. 

Since the t ime-history singularity is closely re- 

lated to the dominant eigenmode of  the free sys- 

tem response, it is general to examine finite-ele- 

ment eigenvalues. Eigenvalues of the free temper- 

ature response of  the two-dimensional  problem 

(1) are given by 

, = .i~x.,'pc) [ (m/Lx) 2 + (n/Ly) 2], 
(24) 

m, n = l ,  2, "- 

where Lx and L~ are characteristic lengths of the 

problem domain ~O~R ~ (N---- 2). Letting ~,m be 

a shortest relative distance between two adjacent 

finite-element nodes, the largest eigenvalue (i.e. 

corresponding to the shortest wavelength) 

becomes A ~ x ~  N [  Tr / ~nJZ  ( x/  pc) . 
In order to prevent the oscillation due to the 

fundamental eigenmode, it has been suggested 

that one should select the critical time-step size 

satisfying (Co of 2 ~ 3  (Burnett 1988)) 

(At )  0,., ~ 2Cr A=,~ (25) 

4. Numerical Experiments 

Figure 2 depicts an one-dimensional  heat 

convection model, where the left end is kept to 

initial temperature To while the right end is 

exposed to the surrounding with constant tem- 

perature T| The numerical data taken for our 

experiments are contained in Table 1. 

In order to examine the oscillation behavior in 

the t ime-history response of temperature, we first 

carried out the preliminary simulation for three 

different uniform time steps, 3, 1 and 0.1 sec with 

a uniform finite element mesh constructed with 

eight quadratic elements. We observed that the 

case with time step of  0.1 sec does not produce 

Ltd. 
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Table 1 

Jin-Rae Cho, Dae- Yul Ha and Tae- Jong Kim 

Geometry and materia data for numerical experiments 

Material parameters Simulation parameters 

Density, o(kg/m s) 5 Length, L(m) 1 

Specific heat, c (J /kg.K)  Time interval, t*(sec) ' i  15 2 

Thermal conductivity, x(W/m,K) 1 Initial temperature, T0(K) 300 

Convection coefficient, hc(W/m2.K) 5 Surrounding temperature, T, (K)  ] 300 
[ 

Heat generation, q (W/m s) 104 

1000 

100 

w 

'q" 10 

0. I 
0.001 

(At - O. l~c)  
p-1 -4- 

2 -+-  
3-~v- 

slope= 1.0 

! 

O. 

. . . . . . . .  �9 . . . . . . . .  I 

0.01 0, I 
mc~h ~?~, h 

(a) At  of 0.1 sec 

Fig. 3 

1000 

100 

t0 

. .$ 

0.1 

0,01 

0.001 
0.001 

- " . . . .  t ' - - a  . . . . . . . .  v . . . . .  ~ , - .  

2 . O J  / 

100 10 l / ~  / / /  

i ' . ~ "  

. . . . . . . .  | . . . . . . . .  I . . . . . . . .  

0.01 0.1 
mesh ~ize, h 

(b) At  of 0.01 see 

The h-convergence rates at t of 1.0 sec 

any remarkable oscillation phenomenon, from 

the t ime-history response plot. Calculating the 

criti-cal time step ( A t ) o n  according to the 

above-mentioned theoretical formula (25). we 

have 0.016sec (with C~ of 2). Even though a 

considerably larger time step compared to (A 

t)cru seems to lead to the acceptable numerical 

results, we will see that such a choice can nol 

secure optimal h-  and p-convergence rates in the 
region where the oscillation error dominates in 

the total error. 

Next four Figs, 3 (a ) -4 (b)  represent numerical 

results of the parametric dependence of the t ime- 

step size on the h-convergence rate for different 

mesh parameters h of 1, 1/2, I/4.  1//16, 1/32, 1/ 

64 and 1/128 and of I, 2 and 3. We note here that 

the mesh size refers to the relative finite-element 

length to the total length L,  and which implies 

~ = h / p .  The errors are calculated at time t of 

1.0 sec, according to the energy-norm defined in 

Eq. (22). As a reference temperature field, we 

approximate the exact solution using the time step 

of sec and the fine finite-element mesh cons- 

tructed with two hundreds uniform 9th order 

elements. 

According to Theorem 3.1, the optimal h-con-  

vergence rate is proport ional  to p = m i n ( s - l ,  p) 

when the regular parti t ioning parameter cr is not 

enforced. On the other hand, from Eq. (25), the 
critical t ime-step size is in inverse proport ion to 

the shortest relative distance ~,~m. From Fig. 3 (a), 

we see the remarkable deterioration in the h-  
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Fig. 4 The h-convergence rates at t of 1.0 scc 

I000 

1017 

I0 

0.I 

(At = 0. lsec) h.=l/'2 
!/4--~- 
i/8-4-- 

ll16-t--- 

5 10 
at~lzoxinmion ~d~ ,  p 
(a) At of 0.1 sec 

I000 

100 

10 

0.1 

0.01 

0.001 

(Az = 0 .0l~c)  h~ i/'2 
. 1/4 

1/16 ~ -  

5 10 
order, p 

(b~' A t  of 0.01 

Fig. 5 The p--convergence rates at t of 1.0 sc~ 

convergence rate owing to the insufficiently small elements, respectively. However, as shown in the 

time step for fine meshes beyond h of 1 , /64  other three figures, the relative distances showing 

for linear, 1/8 for quadratic and I/4 for cubic optimal h-convergence rates becomes shorter as 
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Fig. 6 
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The p-convergence rates at t of 1.0 sec 

10 

the time step decreases. From the plots in Figs. 3 

(b) -4(b) ,  linear, quadratic and cubic elements 

show optimal h-convergence rates up to h oF 

1/128 when the time step is less that 0.0l, 0.001 

and 1 • 10 4 sec, respectively. 

Numerical results associated with the parame- 

tric investigation on the ,b-convergence rate to the 

time-step size for four different mesh sizes are 

represented in Figs. 5 (a ) -6(b) .  We first see, from 

Fig. 5(a), that the considerable deterioration 

in the /)-convergence rates suffering from the 

insufficiently small time step. The prevalence of 

such a deterioration increases in proportion to the 

inverse of the mesh size, and which is consistent 

with the above-mentioned analytical results. 

However, we see the improvement in the #- 

convergence rate for each mesh size according 

to the time-step decrease, from Figs. 5(b) -6(b). 

The case of h ~ : l / 2  recovers the optimal 10- 

convergence rate up to p of 6 when the time 

step is less than 0.01 see while the cases of" h--: I /4  

and 1/8 for the time steps le,ss than 0.001 and 

I X 10 -4 sec, respectively. But. the finest case does 

not show the optimal /)-convergence rate even 

when the time step is reduced to l X 10 -4 sec, as 

presented in Fig. 6(b). 

Figure 7(a) shows the variations of the to- 

tal error measured at time t= l .Osec  along the 

time-step siz~ for different mesh sizes. Recalling 

that the total error is contributed by the time 

diseretization and the finite element approxima- 

tion, we obviously observe each contribution 

from the plots. For each mesh size, the error level 

corresponding to the saturated horizontal line 

indicate,: the error portion by the finite element 

approximation, while the difference in error levels 

between the saturated and the inclined locations 

corresponds to the error portion by the insuffi- 

ciently small time step. We further see that the 

time step securing the optimal h-convergence rate 

becomes continuously smaller as the finite-ele- 
ment mesh is getting refined. 

The relation between the time-step size secu- 

ring optimal h- and if-convergence rate and the 
degree of freedom is presented in Fig. 7(b). The 

linear dependence of the time-step on the degree 

of freedom implies to the enforcement of the 

regular time-space partition introduced in Eq. 

(A6). It is worth to mention that the h--conver- 

gence rate is reduced by one order when the time 
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Parametric conditions for securing optimal h -  and p-convergence rates 
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Fig. g The h-convergence rates at t of 0.1 s~c 

step is regular ly  reduced together  with the mesh p -conve rgence  rates owing  to the difference in 

ref inement ,  as declared in T h e o r e m  3.1. t empera tu re  t ime -h i s t o ry  response  s ingular i ty ,  we 

In order  to examine  the difference in the h -  and next measure  the to ta l  e r ror  at  t of  0.1 sec and  
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compute the corresponding h -  and p-conver- 1 0 ( a ) - l l ( b ) ,  respectively. By comparing Figs. 8 

gence rates. The estimated h-  and p-convergence (a) and 10(a) to Figs. 3(a) and 5(a) showing the 
rates are presented in Figs. 8 (a ) -9(b)  and Figs. h-  and p-convergence rates for A t  of 0.1 sec, we 
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Fig. 11 The/Y-convergence rates at t of 0.1 sec 

see the more serious deterioration in the op- 
timal convergence when t is 0,1 sec. However, 
by comparing both of the remaining figures for 
At >0.01 sec, we observe that this tendency owing 
to the singularity increase in the transient region 
becomes smaller as the time-step size becomes 
smaller. This is because, for a given finite-element 
mesh, an insufficiently small time-step size for the 
case of t =0.1 sec requiring smaller time-step size 
compared to the case of t = l . 0  sec leads to more 
critical situation. 

5. C o n c l u s i o n s  

In this paper, we first presented the derivation 
of a priori error estimate, for the Crank'-Nico- 
lson-Galerkin scheme for convection-type heat 
transfer problems, which reflects the time-dis- 
cretization and the finite-element approxima- 
tion errors. According to the derived error esti- 
mate, the h-- and p-convergence rates lose their 
optimal convergence rates by one when the regu- 
lar time-space partition is enforced. From the 
numerical results obtained from the one-di- 
mensional model problem, we observed that the 

time-step size securing optimal h- and p-conver- 
gence is in linear relation to the DOF. 

In addition, we carried out the parametric nu- 
merical simulation to investigate the effect of the 
time-step size on the h -  and p-convergence rates 
when the regular time-space partitioning condi- 
tion is not enforced. We observed that the op- 
timal h-  and p-convergence rates are strongly 
influenced by h and p so that the optimal con- 
vergence rates are secured only when the total 
error is not affected by the oscillation behavior. 
On the other hand, we compared the numerical 
errors measured at two different time stages, t 
of 0.1 and 1.0 see, in order to examine the effect 
of the time-history singularity. For the same 
time-step size, we observed more serious deteri- 
oration in optimal convergence rates at t of 0.l 
sec, and which is owing to singularity increase in 
the temperature time-history response. 
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We first derive a priori temporal error estima- 
tion. For any time stage, the transient (or am- 
plitude) operator R is represented by a rational 
function of  the operator Z 

= ~ r ( ~ A t / p c ) {  a,e, } (AI) 

= r ( A A t / p c )  T~ (x)  

and furthermore 

T~§ (x) = R ,  T2 (x) (A2) 

From the weak solution of initial-boundary value 

problem (1), it is obvious that Tn+x(x)=e -c'~ua*) 
Tn(x).  Then, the temporal discretization error 
for a single time-step At  is bounded by 

=le "'~''K! T, ~x~ - r (AAt/'pc) T, (x) ]g~l 

~ C ' k d ' [  I -" ' ' ' :~  (AAt' .,2 l, ~J e - r  /pc;I 
#. 

(I-)At/2pc; d(l(2J 7",. T.', (A3) 

�9 ~'.,,: j_ .  i i ' ( l - ; ~ t i 2 t ,  c) 

d I .A, T., I~c~ , T./(pc) ~) 

=C,<#~/ ,) (Ati'[ A'i T,," !pc)3]h~a 

Then, the entire temporal discretization error of 
the semi-discrete problem (2) starting form To 
(x) is 

--I e "~;~1 Td x) - r ~ (AAl.i ac) To(x)]r.~, 

-~Nle-C'~'~T,(x)-r(AAt/oc) Tc!x;I,~ (A4) 
~ G (hd t) {At )~(,u At) ! A'[ To(x) ! (oc)~]l,~,, 
=C2( k,l ~) I '(AI? I AJ[ T, fx) i { pc? ] l~  

Next, for a derivation of a priori spatial error 
estimation, let us define the orthogonal projection 
operator 1-Ih and a positive constant d such that 

l'I,,: V ( ~ )  --+ Vh(12), I I , T  = T ~ (A5) 

a = A t / h  (A6) 

where a enforces a regular partitioning of time- 
space domain. Then, the spatial error in the 
energy norm is derived according to 
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=I Rs TO ( x) - R~I]^T ( x) l~a~ 
#r 

~ ] RT, (x) -RhT,(x)[~al (A7) 

< N J R-Rh t ~ !  To(x) -I],To(x) ] ~  

Here, the error bound ~ T f x )  - l ' I ~ T ( x )  [[~t~ 
for quasi-uniform finite element space follows 
from the well-known standard error bound (see 
Ciarlet (1987) for more details) 

To(x) -]-l^To(x! i~ l  
< inf  ( tTo(x) -T~(x)d~)  

(as )  
<C.(hd~c)m~xi l -~-~tT-}h'~ To(x)[..(~, 
= C~(hdr) h" I To(x)]..,~, 

where , u=min( s -1 ,  ,0) with s, ~ denoted as the 
regularity of  T0(x) and the order of  approxima- 
tion polynomials, respectively. We now consider 

the error bounds of the two transient operators 
R and /?h in Eq. (A7). First, from the fact that 
r ( A A t / p c )  is a contraction in the energy norm, 
we have 

U R J ~  = sup  I R T  ] ~  

[ ' ' 1 ( A 9 )  

= 8Up - -  ~ l 

Next, from the stability analysis, we have 

H R~ II~<,~,--- sup  II R h T  ~ [[R~,,~ , , 
~,('"~ II ThtIE~> < l  ,AIOj 

Substituting Eqs. (AS)- (AI0)  into Eq, (A7), we 
arrive at a priori spatial error estimation : 

[ E~ ~Q) <2G(hdxj,~,'h" ~ To(x) tu.cai 
=(2G(hdJr)  t*/o)h~-~j To(x)~n,~o) (AI 1) 

Combining the temporal and spatial error esti- 
mations Eqs. (A4) and (AI I), we finally obtain 
a priori total error estimate, for the Crank-Nico- 
lson-Galerkin scheme with regular partitioning 
of time-space domain : 

I-~,1~.:1 ~,1~+1E,I,~ 
I' ' "~ (A 12) ./ : '  i "f*l~ ~ :  ,! I- , . :  r l '  a . ~  , 

Then, from the Lax equivalence theorem (Oden 
and Demkowicz 1996), the proof is completed. 
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